• Marketing Land
  • Sections
    • CMO
    • Social
    • SEM
    • SEO
    • Analytics
    • Display
    • Retail
    • MarTech
    • Resources
    • More
    • Home
  • Marketing Land
  • CMO
  • Social
  • SEM
  • SEO
  • Analytics
  • Display
  • Retail
  • MarTech
  • Resources
  • More
  • SUBSCRIBE

Marketing Land

Marketing Land
  • CMO
  • Social
  • SEM
  • SEO
  • Analytics
  • Display
  • Retail
  • MarTech
  • Resources
  • More
  • Home
  • Newsletters
  • Home
Analytics & Conversion

A Concise Overview Of Cross-Channel Marketing Models

For several decades, modeling cross-channel marketing impact was synonymous with marketing mix (“top-down”) models. However, with the increase in cross-channel tracking and computational power, new breeds of marketing attribution (“bottom-up”) and other alternative models have appeared in recent years. Although these models all seek to quantify the relative impact of different media channels, they are […]

Kohki Yamaguchi on April 17, 2014 at 8:54 am
  • More

For several decades, modeling cross-channel marketing impact was synonymous with marketing mix (“top-down”) models. However, with the increase in cross-channel tracking and computational power, new breeds of marketing attribution (“bottom-up”) and other alternative models have appeared in recent years.

Although these models all seek to quantify the relative impact of different media channels, they are quite different in their approach.

And while there are some articles comparing these different methods, I have yet to find a free unbiased resource that gives an overview of the subject; so, this is my attempt to fill the gap.

This overview intentionally avoids evaluation of the approaches listed. Each method has its own strengths and weaknesses, and the choice of which to use will depend on the particular need of the organization.

Common Approaches to Modeling Marketing Impact

The most frequently applied methods for modeling cross-channel marketing impact today are the following:

  • Econometric top-down approach (e.g., marketing mix models)
  • Algorithmic bottom-up approach (e.g., attribution models)
  • Machine learning approach (e.g., agent-based models)

Below, I will give a high-level summary of what each approach involves and their respective strengths and weaknesses.

mobile-chart-growth-analytics-featuredEconometric Approach

The classical econometric approach to marketing mix has the longest history of practice and is widely applied today. Commonly used for informing high-level budget allocation, this approach typically employs some form of distributed lag regression to estimate the impact of marketing activity on total sales.

Traditionally performed as individual consulting projects, some vendors have been working to automate and productize this method.

Outline of approach:

  1. Compile historical spend and marketing activity data across media channels, along with conversion/sales data, and exogenous (non-media) factors such as economy, pricing changes, etc.
  2. Build a statistical model to assess the effect of these variables on sales or other KPI
  3. Quantify the impact of each marketing channel or campaign

Strength: Data-driven statistical approach allows for high predictive capability.

Weakness: Granularity of insights and what-if scenarios are conditional on granularity of input data.

shutterstock_120614257-cookies

Algorithmic Approach

cookiescookiesThe touchpoint based approach to marketing attribution was made possible only recently via cross-channel tracking. These models are unique in that it looks at cookie-level event data, and attempts to determine the impact of each type of touchpoint from sequence patterns and results.

Over the past several years, a number of vendors have offered up marketing attribution solutions, either the bottom-up approach alone or in conjunction with a top-down approach.

Outline of approach:

  1. Track cookie-level data on marketing touchpoint sequences along with conversion activity
  2. Compare conversion rate for a sequence to similar sequences in order to assess effect of a particular touchpoint being present
  3. Aggregate results across sequences to assign relative value to media or campaign types

Strength: Touchpoint-level calculation allows for very granular attribution and impact assessment for tracked media.

Weakness: More descriptive than predictive; cannot by itself incorporate offline or non-tracked online media.

Note: I will not cover rules-based allocations such as even distribution or U-shaped here. Here are some reads on the rules-based vs. algorithmic attribution.

shutterstock_179490242-machine-learningMachine Learning Approach

Agent-based models treat individuals as “agents” that interact with events or stimuli to exhibit certain behaviors, and utilizes computational simulations to assess impact.

The concept of agent-based modeling first appeared in the 70’s, gaining adoption in social sciences in the 90’s. Application toward the field of marketing has been delayed due to the computational complexity involved, but recent years have seen attempts to apply this approach to marketing impact modeling.

Outline of approach:

  1. Create a simulated population for the business using demographic data and understanding of customer profile
  2. Train and calibrate the simulated population using historical marketing activity, along with conversion/sales data and exogenous factors
  3. Simulate reaction to various marketing activities and changes

Strength: Individual-based models allow for flexible simulations at customer demographic level.

Weakness: Accuracy of results is only as valid as the behavioral assumptions for the business and demographic segment.

Future of Marketing Impact Assessment

As marketing enters an era of accountability, the demand for cross-channel marketing impact assessment will continue to increase. The next decade will see further refinement and combination of these approaches to modeling marketing impact. We already see this trend in the market, with some vendors combining top-down and bottom-up approaches.

In reality, however, there is no such thing as a perfect model. It is impossible to account for all the variables that may impact business or marketing performance, and some – such as a viral marketing success or stock market crash – are virtually impossible to predict.

After baseline model accuracy and complexity reaches a plateau, these unpredictable or unaccounted-for factors will play a large role in determining how accurate and useful the models are in practice. As a result, the key differentiator is likely to become real-time simulation and prescriptive capabilities:

  1. Support of predictive what-if scenarios at granular cross-sections (e.g., brands, products, markets, segments) and levels (e.g., campaign, publisher, target, creative)
  2. Prescriptive functionality and workflow that allows marketers to take immediate action based on the most recent trends and campaign results

Images via Shutterstock.com, used by permission.


Opinions expressed in this article are those of the guest author and not necessarily Marketing Land. Staff authors are listed here.



About The Author

Kohki Yamaguchi
Kohki Yamaguchi leads product marketing at Origami Logic, a cross-channel marketing intelligence solution for modern marketers. With a career of 8 years in marketing and analytics spanning various functions, Kohki's focus has always been on translating data into strategy, simplifying the complex, and bridging the gap between data and organizational silos.

Related Topics

AnalyticsAnalytics & Marketing ColumnChannel: Analytics & Conversion

We're listening.

Have something to say about this article? Share it with us on Facebook, Twitter or our LinkedIn Group.

Get the daily newsletter digital marketers rely on.

Processing...Please wait.

See terms.

ATTEND OUR EVENTS

Next Event: Sept. 14-15, 2021

Available On-Demand: March 2021

Available On-Demand: October 2020

×

Attend MarTech - Click Here


Learn More About Our MarTech Events

Available On-Demand: SMX Create

May 18-19, 2021: SMX London

June 8-9, 2021: SMX Paris

June 15-16, 2021: SMX Advanced

June 21-22, 2021: SMX Advanced Europe

August 17, 2021: SMX Convert

November 9-10, 2021: SMX Next

December 14, 2021: SMX Code

Available On-Demand: SMX

Available On-Demand: SMX Report

×


Learn More About Our SMX Events

White Papers

  • Gartner Magic Quadrant for Digital Experience Platforms
  • Selecting a Customer Data Platform For Your Organization: The 2020 Gartner Market Guide
  • The Complete Guide to Web Core Vitals
  • The New Era of Automation in SEO
  • Nielsen Annual Marketing Report: Era of Adaptation
See More Whitepapers

Webinars

  • Drive Customer Engagement with the Power of Personalization
  • 7 Use Cases That Prove Why You Should Implement DAM
  • Accelerate Your SEO & Content Marketing Program with 4 Key Milestones
See More Webinars

Research Reports

  • Local Marketing Solutions for Multi-Location Businesses
  • Enterprise Digital Asset Management Platforms
  • Identity Resolution Platforms
  • Customer Data Platforms
  • B2B Marketing Automation Platforms
  • Call Analytics Platforms
See More Research

Attend SMX For Only $199

h
Receive daily marketing news & analysis.

Channels

  • MarTech
  • CMO
  • Social
  • SEM
  • SEO
  • Mobile
  • Analytics
  • Retail
  • Display

Our Events

  • MarTech
  • SMX

Resources

  • White Papers
  • Research
  • Webinars

About

  • About Us
  • Contact
  • Privacy
  • Marketing Opportunities
  • Staff

Follow Us

  • Facebook
  • Twitter
  • LinkedIn
  • Newsletters
  • RSS
  • Youtube

© 2021 Third Door Media, Inc. All rights reserved.